Synthesis of titania-bentonite nanocomposite and its applications in water-based drilling fluids
Titania or TiO2-bentonite nanocomposite was synthesised by environmental friendly and cost effective hydrothermal method. Synthesised nanocomposite was successfully characterised by Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). The target of the study was to enhance the rheological...
| Main Authors: | Nizamani, A.A., Ismail, A.R., Junin, R., Dayo, A.Q., Tunio, A.H., Ibupoto, Z.H., Sidek, M.A.M. |
|---|---|
| Format: | Article |
| Institution: | Universiti Teknologi Petronas |
| Record Id / ISBN-0: | utp-eprints.19883 / |
| Published: |
Italian Association of Chemical Engineering - AIDIC
2017
|
| Online Access: |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019456994&doi=10.3303%2fCET1756159&partnerID=40&md5=e3a7f99f274942e49febb50dbc8a26c3 http://eprints.utp.edu.my/19883/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: |
Titania or TiO2-bentonite nanocomposite was synthesised by environmental friendly and cost effective hydrothermal method. Synthesised nanocomposite was successfully characterised by Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). The target of the study was to enhance the rheological behaviour of the water-based drilling fluid (WBDF) by using synthesised nanocomposite. The experimental results revealed that Titania-bentonite nanocomposite exhibited better rheological characteristics than conventional WBDF. Rheological properties in particular yield point (YP) and 10-min gel strength (10-min GS) were improved by 57 and 40 compared to basic drilling fluid after addition of 1.0 g of the synthesised nanocomposite at 65.56 °C. API filtrate loss volume and High Pressure High Temperature (HPHT) filtrate loss volume were slightly reduced by 10 , and 9.2 . These scientific results can be used to formulate enhanced WBDF at elevated temperatures. Copyright © 2017, AIDIC Servizi S.r.l.. |
|---|