Mammogram classification using curvelet GLCM texture features and GIST features

This paper presents a feature fusion technique that can be used for classification of ROIs in breast cancer into normal and abnormal classes. The texture features are extracted using geometric invariant shift transform and statistical features from the curvelet grey level co-occurrence matrices. Fir...

Full description

Main Authors: Gardezi, S.J.S., Faye, I., Adjed, F., Kamel, N., Eltoukhy, M.M.
Format: Article
Institution: Universiti Teknologi Petronas
Record Id / ISBN-0: utp-eprints.20333 /
Published: Springer Verlag 2017
Online Access: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994508050&doi=10.1007%2f978-3-319-48308-5_67&partnerID=40&md5=be837cf29475b0685f78e75292854546
http://eprints.utp.edu.my/20333/
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!