Hybrid ABFA-APSO Algorithm

The aim of this chapter is to propose improvement to the adaptation of bacterial foraging algorithm (BFA) and to hybridize it with accelerated particle swarm optimization (APSO) in order to accelerate its convergence. In the proposed algorithm, the random walk in the chemotaxis stage of the ABFA is...

Full description

Main Authors: Hassan, S.M., Ibrahim, R., Saad, N., Bingi, K., Asirvadam, V.S.
Format: Article
Institution: Universiti Teknologi Petronas
Record Id / ISBN-0: utp-eprints.24787 /
Published: Springer 2020
Online Access: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085220140&doi=10.1007%2f978-3-030-47737-0_5&partnerID=40&md5=3caee760e8a0a4d29eddc6cba19a1bc5
http://eprints.utp.edu.my/24787/
Tags: Add Tag
No Tags, Be the first to tag this record!
id utp-eprints.24787
recordtype eprints
spelling utp-eprints.247872021-08-27T06:27:05Z Hybrid ABFA-APSO Algorithm Hassan, S.M. Ibrahim, R. Saad, N. Bingi, K. Asirvadam, V.S. The aim of this chapter is to propose improvement to the adaptation of bacterial foraging algorithm (BFA) and to hybridize it with accelerated particle swarm optimization (APSO) in order to accelerate its convergence. In the proposed algorithm, the random walk in the chemotaxis stage of the ABFA is updated through the velocity equation of the APSO. © 2020, Springer Nature Switzerland AG. Springer 2020 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085220140&doi=10.1007%2f978-3-030-47737-0_5&partnerID=40&md5=3caee760e8a0a4d29eddc6cba19a1bc5 Hassan, S.M. and Ibrahim, R. and Saad, N. and Bingi, K. and Asirvadam, V.S. (2020) Hybrid ABFA-APSO Algorithm. Studies in Systems, Decision and Control, 293 . pp. 121-140. http://eprints.utp.edu.my/24787/
institution Universiti Teknologi Petronas
collection UTP Institutional Repository
description The aim of this chapter is to propose improvement to the adaptation of bacterial foraging algorithm (BFA) and to hybridize it with accelerated particle swarm optimization (APSO) in order to accelerate its convergence. In the proposed algorithm, the random walk in the chemotaxis stage of the ABFA is updated through the velocity equation of the APSO. © 2020, Springer Nature Switzerland AG.
format Article
author Hassan, S.M.
Ibrahim, R.
Saad, N.
Bingi, K.
Asirvadam, V.S.
spellingShingle Hassan, S.M.
Ibrahim, R.
Saad, N.
Bingi, K.
Asirvadam, V.S.
Hybrid ABFA-APSO Algorithm
author_sort Hassan, S.M.
title Hybrid ABFA-APSO Algorithm
title_short Hybrid ABFA-APSO Algorithm
title_full Hybrid ABFA-APSO Algorithm
title_fullStr Hybrid ABFA-APSO Algorithm
title_full_unstemmed Hybrid ABFA-APSO Algorithm
title_sort hybrid abfa-apso algorithm
publisher Springer
publishDate 2020
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085220140&doi=10.1007%2f978-3-030-47737-0_5&partnerID=40&md5=3caee760e8a0a4d29eddc6cba19a1bc5
http://eprints.utp.edu.my/24787/
_version_ 1741196868519460864
score 11.62408