EEG visual and non- Visual learner classification using LSTM recurrent neural networks
Saved in:
| Main Authors: | Jawed, S., Amin, H.U., Malik, A.S., Faye, I. |
|---|---|
| Format: | Conference or Workshop Item |
| Institution: | Universiti Teknologi Petronas |
| Record Id / ISBN-0: | utp-eprints.25144 / |
| Published: |
Institute of Electrical and Electronics Engineers Inc.
2019
|
| Online Access: |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062783413&doi=10.1109%2fIECBES.2018.08626711&partnerID=40&md5=86f34114a4e941db77089975febaa9d4 http://eprints.utp.edu.my/25144/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
EEG visual and non- Visual learner classification using LSTM recurrent neural networks
by: Jawed, S., et al.
Published: (2019) -
Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach
by: Ahmad, R.F., et al.
Published: (2017) -
Classification of cognitive and resting states of the brain using EEG features
by: Ahmad, R.F., et al.
Published: (2016) -
Exploring EEG Effective Connectivity Network in Estimating Influence of Color on Emotion and Memory
by: Chai, M.T., et al.
Published: (2019) -
Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques
by: Amin, H.U., et al.
Published: (2015)