Designing of overcomplete dictionaries based on DCT and DWT

Sparse representation is very active area in computer vision and image analysis. It has many applications in de-noising, stereo vision, image painting, image restoration, image de-blurring and many. For sparse modeling, there is need to design an appropriate dictionary. However, there are many dicti...

Full description

Main Authors: Qayyum, A., Malik, A.S., Naufal, M., Saad, M., Mazher, M., Abdullah, F., Abdullah, T.A.R.B.T.
Format: Conference or Workshop Item
Institution: Universiti Teknologi Petronas
Record Id / ISBN-0: utp-eprints.30883 /
Published: Institute of Electrical and Electronics Engineers Inc. 2016
Online Access: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84965115437&doi=10.1109%2fISSBES.2015.7435883&partnerID=40&md5=e26f09dafc7f1900732c0c0eec4c9fb9
http://eprints.utp.edu.my/30883/
Tags: Add Tag
No Tags, Be the first to tag this record!
id utp-eprints.30883
recordtype eprints
spelling utp-eprints.308832022-03-25T07:40:17Z Designing of overcomplete dictionaries based on DCT and DWT Qayyum, A. Malik, A.S. Naufal, M. Saad, M. Mazher, M. Abdullah, F. Abdullah, T.A.R.B.T. Sparse representation is very active area in computer vision and image analysis. It has many applications in de-noising, stereo vision, image painting, image restoration, image de-blurring and many. For sparse modeling, there is need to design an appropriate dictionary. However, there are many dictionaries used for sparse modeling and were reported in literature. In this paper, we implemented the fixed dictionaries and adaptive dictionaries i.e., Method of Optimal Direction (MOD) and KSVD. Both adaptive are used for training the noisy images and computing the error and recovered the number of atoms using adaptive or small patches of images. The result showed that our proposed dictionaries performed much better for atom recovery in noisy patches of the images. The dictionary based on discrete wavelet transform (DWT) basis function with KSVD produced accurate result as compared to all other dictionaries. However, for fast convergence of RMSE value to minimum, DWT with KSVD and MOD dictionaries showed higher convergence rate as compared to discrete cosine transform (DCT) with KSVD and MOD. The computation complexity increased little using the DWT dictionary as compared to DCT dictionary. © 2015 IEEE. Institute of Electrical and Electronics Engineers Inc. 2016 Conference or Workshop Item NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-84965115437&doi=10.1109%2fISSBES.2015.7435883&partnerID=40&md5=e26f09dafc7f1900732c0c0eec4c9fb9 Qayyum, A. and Malik, A.S. and Naufal, M. and Saad, M. and Mazher, M. and Abdullah, F. and Abdullah, T.A.R.B.T. (2016) Designing of overcomplete dictionaries based on DCT and DWT. In: UNSPECIFIED. http://eprints.utp.edu.my/30883/
institution Universiti Teknologi Petronas
collection UTP Institutional Repository
description Sparse representation is very active area in computer vision and image analysis. It has many applications in de-noising, stereo vision, image painting, image restoration, image de-blurring and many. For sparse modeling, there is need to design an appropriate dictionary. However, there are many dictionaries used for sparse modeling and were reported in literature. In this paper, we implemented the fixed dictionaries and adaptive dictionaries i.e., Method of Optimal Direction (MOD) and KSVD. Both adaptive are used for training the noisy images and computing the error and recovered the number of atoms using adaptive or small patches of images. The result showed that our proposed dictionaries performed much better for atom recovery in noisy patches of the images. The dictionary based on discrete wavelet transform (DWT) basis function with KSVD produced accurate result as compared to all other dictionaries. However, for fast convergence of RMSE value to minimum, DWT with KSVD and MOD dictionaries showed higher convergence rate as compared to discrete cosine transform (DCT) with KSVD and MOD. The computation complexity increased little using the DWT dictionary as compared to DCT dictionary. © 2015 IEEE.
format Conference or Workshop Item
author Qayyum, A.
Malik, A.S.
Naufal, M.
Saad, M.
Mazher, M.
Abdullah, F.
Abdullah, T.A.R.B.T.
spellingShingle Qayyum, A.
Malik, A.S.
Naufal, M.
Saad, M.
Mazher, M.
Abdullah, F.
Abdullah, T.A.R.B.T.
Designing of overcomplete dictionaries based on DCT and DWT
author_sort Qayyum, A.
title Designing of overcomplete dictionaries based on DCT and DWT
title_short Designing of overcomplete dictionaries based on DCT and DWT
title_full Designing of overcomplete dictionaries based on DCT and DWT
title_fullStr Designing of overcomplete dictionaries based on DCT and DWT
title_full_unstemmed Designing of overcomplete dictionaries based on DCT and DWT
title_sort designing of overcomplete dictionaries based on dct and dwt
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2016
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84965115437&doi=10.1109%2fISSBES.2015.7435883&partnerID=40&md5=e26f09dafc7f1900732c0c0eec4c9fb9
http://eprints.utp.edu.my/30883/
_version_ 1741197483267063808
score 11.62408