(3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics

3-aminopropyltriethoxysilane (APTES)-functionalized silica nanocapsule (A-SiNC) was prepared from a one-step synthesis process for the application of post-combustion carbon dioxide (CO2) capture. A-SiNC was synthesized from the microemulsion method by using cetyl trimethylammonium bromide (CTAB) as...

Full description

Main Authors: Thangarajoo, N., Abdul Rahim, A.R., Johari, K., Saman, N.
Format: Article
Institution: Universiti Teknologi Petronas
Record Id / ISBN-0: utp-eprints.33060 /
Published: Academic Press Inc. 2022
Online Access: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126535972&doi=10.1016%2fj.jssc.2022.123019&partnerID=40&md5=d3eb0a4b737910c768882245147235ae
http://eprints.utp.edu.my/33060/
Tags: Add Tag
No Tags, Be the first to tag this record!
id utp-eprints.33060
recordtype eprints
spelling utp-eprints.330602022-06-09T08:19:56Z (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics Thangarajoo, N. Abdul Rahim, A.R. Johari, K. Saman, N. 3-aminopropyltriethoxysilane (APTES)-functionalized silica nanocapsule (A-SiNC) was prepared from a one-step synthesis process for the application of post-combustion carbon dioxide (CO2) capture. A-SiNC was synthesized from the microemulsion method by using cetyl trimethylammonium bromide (CTAB) as a cationic surfactant, toluene as co-solvent, APTES as an amine group, and tetraethyl orthosilicate (TEOS) as silica base. The synthesis and functionalization were carried out in a variation of APTES using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), nitrogen adsorption-desorption measurements (BET), and transmission electron microscopy (TEM). The results showed that silica nanocapsules (SiNC) potential to react until a temperature of 166 �°C, which indicates a stable thermal decomposition property. The surface area and surface morphology were influenced by the presence of an amino group as APTES loaded SiNC provides a different mechanism compared to blank SiNC. The close-packed structure was seen and proven in A-SiNC based on the observation from TEM. © 2022 Elsevier Inc. Academic Press Inc. 2022 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126535972&doi=10.1016%2fj.jssc.2022.123019&partnerID=40&md5=d3eb0a4b737910c768882245147235ae Thangarajoo, N. and Abdul Rahim, A.R. and Johari, K. and Saman, N. (2022) (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics. Journal of Solid State Chemistry, 310 . http://eprints.utp.edu.my/33060/
institution Universiti Teknologi Petronas
collection UTP Institutional Repository
description 3-aminopropyltriethoxysilane (APTES)-functionalized silica nanocapsule (A-SiNC) was prepared from a one-step synthesis process for the application of post-combustion carbon dioxide (CO2) capture. A-SiNC was synthesized from the microemulsion method by using cetyl trimethylammonium bromide (CTAB) as a cationic surfactant, toluene as co-solvent, APTES as an amine group, and tetraethyl orthosilicate (TEOS) as silica base. The synthesis and functionalization were carried out in a variation of APTES using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), nitrogen adsorption-desorption measurements (BET), and transmission electron microscopy (TEM). The results showed that silica nanocapsules (SiNC) potential to react until a temperature of 166 �°C, which indicates a stable thermal decomposition property. The surface area and surface morphology were influenced by the presence of an amino group as APTES loaded SiNC provides a different mechanism compared to blank SiNC. The close-packed structure was seen and proven in A-SiNC based on the observation from TEM. © 2022 Elsevier Inc.
format Article
author Thangarajoo, N.
Abdul Rahim, A.R.
Johari, K.
Saman, N.
spellingShingle Thangarajoo, N.
Abdul Rahim, A.R.
Johari, K.
Saman, N.
(3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics
author_sort Thangarajoo, N.
title (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics
title_short (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics
title_full (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics
title_fullStr (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics
title_full_unstemmed (3-Aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: Synthesis and analysis of physicochemical characteristics
title_sort (3-aminopropyl) triethoxysilane-functionalized silica nanocapsule adsorbent: synthesis and analysis of physicochemical characteristics
publisher Academic Press Inc.
publishDate 2022
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126535972&doi=10.1016%2fj.jssc.2022.123019&partnerID=40&md5=d3eb0a4b737910c768882245147235ae
http://eprints.utp.edu.my/33060/
_version_ 1741197797336547328
score 11.62408